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Abstract Snow depth observations and modeled snow density can be combined to calculate snow water
equivalent (SWE). In this approach, SWE uncertainty is dominated by snow density uncertainty, which
depends on meteorological data quality and process representation (e.g., compaction) in models. We test
whether assimilating snow depth observations with the particle filter can improve modeled snow density,
thus improving SWE estimated from intermittent depth observations. We model snowpack at Mammoth
Mountain (California) over water years 2013–2016, assuming monthly snow depth data (e.g., sampling
intervals relevant to lidar or manual surveys) for assimilation, and validate against observed SWE and
density. The particle filter reduced density and SWE root‐mean‐square error by 27% and 28% relative to
open loop simulations when using high‐quality, point location forcing. Assimilation gains were greater
(35% and 51% reduction in density and SWE root‐mean‐square error) when using coarse‐resolution
North American Land Data Assimilation System phase 2 meteorology. Ensembles created with both
meteorological and compaction perturbations led to the greatest model improvements. Because modeled
depth and density were both generally lower than observations, assimilation favored particles with higher
precipitation and thus more overburden compaction. This moved depth and density (therefore SWE)
closer to observations. In contrast, ensemble generation that varied only compaction parameters degraded
performance. These results were supported by synthetic experiments with prescribed error sources.
Thus, assimilation of snow depth data from lidar or other techniques can likely improve snow density and
SWE derived at the basin scale. However, supplementary in situ observations are valuable to identify
primary error sources in simulated snow depth and density.

1. Introduction

Seasonal snowpack serves as an important control on irrigation, drinking water, hydropower, ecological
activity, weather, and regional and global climate (Bales et al., 2006; Serreze et al., 1999). Despite this,
the spatial and temporal distribution of snow water equivalent (SWE) in mountain basins remains
undermonitored with ground observations (Bales et al., 2006). In addition, no satellite remote sensing
platform resolves local scale SWE variations across all snow‐covered environments, ranging from moun-
tains to polar regions (Dozier, 2011; Nolin, 2010; Sturm, 2015). A path forward is to calculate SWE by
measuring spatial snow depth with remote sensing (e.g., airborne lidar, synthetic aperture radar, or
photogrammetry) and estimating bulk snow density with models (Figures 1a–1c). This paper describes
the use of data assimilation with snow depth observations to improve modeled bulk density and
thus SWE.

The recent National Aeronautics and Space Administration Airborne Snow Observatory (ASO) missions
have demonstrated that airborne lidar can yield near‐real time monitoring of basin‐wide snow depth at
the meter scale for operational and research applications (Painter et al., 2016). Despite the promise of these
high‐resolution data, nonnegligible uncertainty in SWE maps persists because (1) there is no parallel
advance in remote sensing or ground measurement of snow density across basins, (2) observed density
can vary widely across an individual basin (e.g., from 200 to 500 kg/m3 in Wetlaufer et al., 2016), (3) esti-
mated density can vary over a wide range (e.g., ±30%) due to model selection alone and is further enhanced
by uncertainties in meteorology and model parameters (Feng et al., 2008), and (4) uncertainty in modeled
snow density often contributes more to the total SWE error than uncertainties in lidar snow depth
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(Raleigh & Small, 2017). Given this, we must advance snow model approaches to accurately represent snow
density variations in space and time.

One approach to improve density simulated by models is to calibrate parameters via comparison to field
observations, such as in situ bulk density data from snow pits or collocated depth and snow pillow sensors.
This approach is problematic for several reasons. First, data collection is labor intensive, and thus, observa-
tions are sparse in space and time (Elder et al., 2009). Second, snow stations are preferentially located at mid-
elevations in areas with low slopes in clearings (e.g., Gleason et al., 2017; Wetlaufer et al., 2016). Third, errors
can be hydrologically significant—due to method‐to‐method differences (on the order of 5–10%), person‐to‐
person differences in skill and procedures, and environmental errors (e.g., snow bridging at snow pillow
sites) (Conger & McClung, 2009; Proksch et al., 2016). Fourth, a model tuned for one basin may not produce
accurate estimates in another basin, other years, or in real time (e.g., Rutter et al., 2009). In addition, calibrat-
ing a density model to combine with snow depth does not allow for quantification of density uncertainty
and, by extension, total SWE uncertainty (e.g., Painter et al., 2016).

An alternative approach to improve modeled snow density is to incorporate snow depth observations via
data assimilation, which constrains the evolution of model state variables over time. Data assimilation meth-
ods explicitly recognize that the true state vector of a system is unobservable but estimate the probability
density of the state vector by generating an ensemble of model states. In doing so, assimilation can quantify
model uncertainties that arise from various sources, such as model forcing data, parameter choices, and
model decisions. Depending on the assimilation scheme, these estimates are updated or weighted by avail-
able observations to produce a posterior probability density for state variables of the system. Prior studies
have improved snow simulations through data assimilation using observations of snow‐covered area
(Andreadis & Lettenmaier, 2006; De Lannoy et al., 2012; Girotto et al., 2014; Girotto, Margulis, et al.,
2014; Kumar et al., 2015, 2008; Liu et al., 2013; Margulis et al., 2015; Rodell et al., 2004), optical reflectance
(Charrois et al., 2016), passive microwave and broadband albedo (Durand &Margulis, 2006, 2007), SWE (De
Lannoy et al., 2012; Kumar et al., 2008; Slater & Clark, 2006; Sun et al., 2004), and snow depth (Charrois
et al., 2016; Kumar et al., 2015, 2014; Liston et al., 1999; Liu et al., 2013; Magnusson et al., 2017). Some

Figure 1. Conceptual diagram demonstrating how (a) lidar snow depth (ASO data from the Tuolumne Basin) can be com-
bined with (b) modeled density to map (c) SWE. Differences between modeled and observed depth in (d) space and
(e) time can be used to adjust (f) modeled density (e.g., through assimilation) and therefore SWE. ASO = Airborne Snow
Observatory; SWE = snow water equivalent.
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applications, such as the Snow Data Assimilation System, assimilate multiple variables like snow‐covered
area, SWE, and snow depth observations (Carroll et al., 2001). Our objective differs from these prior studies
in that we focus on improvements in snow density that may be gained via assimilation of the more readily
observed snow depth.

There are several ways to assimilate snow depth observations into a model, but the particle filter (PF) has
several key advantages over Ensemble Kalman Filter, Kalman Smoother, and direct insertion methods for
this application. First, Kalman updates are only appropriate for Gaussian inputs and linear models—while
the PF can be used with nonlinear systems (van Leeuwen, 2009). Direct insertion and Kalman updating both
change the assimilated state variable directly, which may violate model physics and conservation of mass
(Magnusson et al., 2017). PF approaches give weights to individual particles but leave model states
untouched. A direct insertion framework also assumes that observations are error free, leading to more
severe model corrections than the PF (Magnusson et al., 2017). Lastly, the PF can be more computationally
efficient than the Ensemble Kalman Filter and Smoother (Margulis et al., 2015)—an important considera-
tion when designing a data assimilation scheme for all points across a basin (Figure 1) in near real time.
We use the PF in this paper to assess improvements in modeled density and SWE (objectives and questions
outlined in section 2).

2. Objectives and Approach

Over the past decade, there has been a technological revolution in remotely sensed snow depth measure-
ment, including airborne and terrestrial lidar (Grünewald et al., 2010; Painter et al., 2016), spaceborne
and drone‐based photogrammetry (Marti et al., 2016; Vander Jagt et al., 2015), and airborne radar (Moller
et al., 2017). These data share several common traits: they are spatially extensive, discontinuous through
time, and have errors on the order of ~10 cm. Regardless of the measurement technique, model‐based
estimates of bulk snow density are required to estimate SWE. The overarching question addressed in this
paper is: can assimilating intermittent snow depth observations with the PF improve modeled density and
therefore SWE? Our focus is on measurements made approximately monthly, similar to the time between
ASO lidar surveys in California, thus making the results relevant to the ongoing ASO campaign. Using a
single snow study site, we resample hourly observations of snow depth to monthly resolution to match
the sampling interval achievable with remote sensing or manual snow surveys.

Snow depth observations can be used to identify errors in simulated snow depth (Figures 1d and 1e). Snow
depth and density are linked through a suite of physical processes (e.g., overburden compaction), and hence,
snow depth errors can provide useful information on model density errors. Based on the magnitude and
direction of depth errors, data assimilation could improve modeled snow density (Figure 1f). When these
improved density estimates are combined with high‐quality depth observations, the resulting estimates of
SWE will similarly be improved. Magnusson et al. (2017) used daily depth data to weight model simulations
to improve forecasted SWE and snowmelt. However, they did not explicitly consider the influence of assim-
ilation on simulated density nor did they consider data with a longer time between successive observations,
typical of current remote sensing platforms (e.g., every month). Hedrick et al. (2018) used a direct insertion
assimilation technique with ASO lidar snow depth but did not examine whether modeled density was
improved with assimilation.

The plan for this paper is as follows. In section 3, we describe the study site and data. Then, in the methods
section (section 4), we describe the snow model and data assimilation approach. We complete a series of
experiments and describe the results in section 5. First, we use local meteorological station forcing and com-
pare the density and SWE improvements resulting from different ensemble generation methods: meteorolo-
gical forcing perturbations only, compaction parameter perturbations only, and a combination of both. This
analysis quantifies the gains associated with different ensemble generation decisions. Second, we repeat
these experiments but use North American Land Data Assimilation System (NLDAS) forcing. This stepmore
closely replicates how remotely sensed depth observations would be used in practice, as meteorological for-
cing is not available throughout a basin. Third, we complete a series of synthetic experiments with pre-
scribed error sources. These experiments help explain the success and failure of different possible
ensemble generation choices. Although we do not use spatially distributed data (e.g., lidar) in this paper,
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in the discussion (section 6) we describe how our results can be used to improve estimates of SWE by com-
bining spatially extensive snow depth observations with data assimilation and modeled snow density.

3. Study Site and Data

We conduct experiments at the Cold Regions Research and Engineering Laboratory and University of
California—Santa Barbara Energy Site (CUES, 37.643 N, 119.029 W, 2,940 m). CUES data are publicly avail-
able and described by Bair et al. (2018). CUES sits on a small plateau halfway up Mammoth Mountain, CA.

The data set includes hourly meteorological and energy balance measurements for 2011 to 2017. The
California Department of Water Resources installed a snow pillow in September 2012, which provides
hourly SWE data for validation. For assimilation, we use snow depth measured hourly with an ultrasonic
sensor located directly above the snow pillow but resampled at a 1‐month interval (1 November to 1 May)
as a proxy for typical intermittent remotely sensed depth data (described further in section 4.3). Hourly bulk
snow density is derived by dividing the snow pillow SWE by the ultrasonic snow depth (and then normalized
by liquid water density). Precipitation measurements are unreliable, as the CUES site is typically too windy
for satisfactory catch efficiencies (Bair et al., 2018). We use hourly precipitation from the nearby (3.5 km)
Mammoth Pass site (CDEC code MHP, 2,835 m) which is less wind affected and receives representative
precipitation amounts for the area.

Extremely high precipitation buried the depth sensor at MHP frommid‐February to May 2017, so we restrict
our modeling to water years 2013–2016. The 2015 water year was historically dry and produced the lowest
recorded peak snow depth at CUES. Years 2013 and 2014 were also below average in terms of snow accumu-
lation, and 2016 was more representative of the area's historical precipitation. For details about measure-
ment methods, data control, and sensor specifications, see Bair et al. (2018).

In typical spatial applications, the high‐quality meteorological forcing data measured at CUES are not avail-
able throughout a basin. To assess the feasibility of using a spatially distributed data set, we also force our
model with hourly 1/8° data from the NLDAS‐2 (hereafter called NLDAS) grid cell that contains CUES
(Xia et al., 2012). These inputs more closely replicate a current paradigm in estimating SWE: combining
remotely sensed withmodeled density using nonlocal meteorological forcing. We did not conduct any down-
scaling operations (see section 6). For reference, the elevation of the coincident NLDAS grid cell is approxi-
mately 200 m lower than the CUES site.

4. Methods and Data Assimilation Experiments
4.1. Snow Model Description

For this study we use the physical snowmelt model Snobal (Marks et al., 1992; Marks &Dozier, 1992). Snobal
is a point model that solves the energy and mass budget for a two‐layer snowpack, using input data on
meteorological forcing, initial snow conditions, and measurement heights. The model has been applied in
numerous studies (e.g., Painter et al., 2007, 2016; Pomeroy et al., 2016; Reba et al., 2014; Winstral &
Marks, 2014). We chose Snobal because it was developed in the Sierra Nevada and is used by ASO to estimate
snow density for lidar‐based SWE in this region. The performance of other models in a data assimilation fra-
mework is a topic for future work.

In response to ASO's need for robust snow density modeling, the density routine within Snobal was recently
updated to include the effects of destructive metamorphism and overburden compaction, based on equations
fromAnderson (1976; D.Marks, personal communication, December 2017). Themodel indexes the partition
between rain and snow and the density of new snow from a lookup table, based on the precipitation (dew
point) temperature. Bulk density is also adjusted for liquid water present in the snowpack at each time step.
Like most snowmodels, Snobal does not account for wind compaction effects on snow density. Model inputs
were prepared using the standard Image Processing Workbench tools.

4.2. The PF

A complete description of a state vector of interest (e.g., snow depth) is given by its probability density p (xk),
where xk is the “true” state vector at time step k. However, in practice, xk is unobservable—wemay only have
an imperfect observation (zk) and/or model estimate (xik). The goal of the PF is to estimate the probability
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density of the true state vector over time by generating an ensemble of model states, represented by a collec-
tion of individual model estimates (“particles”) and constrained by observations.

Model runs are varied to reflect the model's main uncertainty sources. For example, each particle may be
generated with different meteorological forcing. These particles are advanced in parallel between time steps
k − 1 and k. We assume that the ith particle (xik) is generated from the probability distribution of xk, and all
the particles will define the shape of the distribution. In other words, the particles create a histogram, with
particles falling into bins in the xk dimension. More particles in a bin indicate a higher probability within the
distribution. If a particle is far from an observation at time step k, it should haveminimal impact on the prob-
ability distribution. This concept is formalized by calculating the particle's weight

wi
k ¼ wi

k−1 p zkjxik
� �

(1)

where the weight on particle i at time step k is equal to its weight at the previous time step, multiplied by a
likelihood function, p (zk|x

i
k). The likelihood describes the probability of observing zk given the particle esti-

mate xik (lower if zk and xik are far apart). The function is assumed to be normally distributed

p zkjxik
� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð ÞN Cvj j
q e −0:5 zk−xikð ÞC−1

v zk−xikð Þ½ � (2)

whereN is the number of observations and Cv is the measurement error covariance. Weights are normalized
to sum to 1. The collection of particles, now weighted by the observation at time step k, approximates the
probability density of the true state vector

p xkjz1:kð Þ ¼ ∑N
i¼1w

i
kδ xk−x

i
k

� �
(3)

where δ is the Dirac delta function—which returns zero for all arguments, except for when its argument is
zero. Functionally, it creates a histogram for the particle weights with infinitely small bins.

Particle weights refer to weights from previous time steps (equation (1)). Therefore, particles that diverge
from several consecutive observations soon develop very low weights, and the statistical information con-
tained in equation (3) becomes less meaningful as the probability distribution is defined by fewer particles.
Resampling is one way to overcome this filter degeneracy (van Leeuwen, 2009).

With resampling, particles with very low weights are eliminated, while high weight particles are duplicated
and advanced to the next time step. The higher the particle weight, the more duplicates it creates. After
resampling, the total number of particles is kept constant at N and weights are reset to 1/N. Importantly,
the PF does not adjust the state variables of individual particles at any point—it only assigns weights (e.g.,
Magnusson et al., 2017). The particles diverge between time steps (even duplicates) because each particle
gets different meteorological forcing, parameter values, etc.

Approaches have varied in defining the PF's single “best estimate” of the state vector over the assimilation
period. For example, Magnusson et al. (2017) calculate a weighted average of ensemble members using par-
ticle weights, Dong et al. (2015) use the mean of the distribution, and Margulis et al. (2015) use the
ensemble median.

For a more comprehensive description of the PF, including its Bayesian motivation and formula derivations,
see Arulampalam et al. (2007), Dong et al. (2015), Magnusson et al. (2017), and van Leeuwen (2009). Selected
example calculations are in the supporting information.

4.3. Data Assimilation Setup

We propagated 100 particles between assimilation intervals, as Magnusson et al. (2017) demonstrated that
fewer than 100 particles are needed to reduce root‐mean‐square error (RMSE) and improve correlation with
the PF. We also generated one “open loop” (OL, i.e., no assimilation) model run for comparison, using the
default parameters in Snobal.

Although CUESmeasures snow depth hourly, we resampled the snow depth data set to monthly tomake the
assimilation results relevant to a sampling interval possible with remote sensing (e.g., ASO) and field
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surveys. A well‐instrumented site like CUES has the detailed meteorological and snow data required for eva-
luation of the PF technique that would otherwise not be available at a location with just snow depth obser-
vations. Themonthly snow depth data here could represent any type of snow depth data (e.g., stereo imaging
and structure‐from‐motion) that is not continuous through time.

The PF requires an assumption of depth measurement uncertainty. Raleigh and Small (2017) review
previously reported lidar snow depth uncertainties, with a median of 8 cm. We set Cv equal to 5 cm
(equation (2)). We note that the results are not sensitive to this parameter: tests with Cv values of 2 and
10 cm produced nearly identical results.

To avoid filter degeneracy, we resampled particles at every assimilation time step using a stochastic universal
sampling algorithm (supporting information), which Kitagawa (1996) showed to have the lowest sampling
noise among several methods. To confirm, we ran the PF over the 2016 water year with four resampling for-
mulas (stochastic universal, probabilistic, residual, and Monte Carlo Metropolis‐Hastings algorithms; van
Leeuwen, 2009) and did not find substantial differences in the resulting weighted average modeled snow
density (no figures shown).
4.3.1. Ensemble Generation and Uncertainties
To represent possible sources of model uncertainty, we generated ensembles of particles by running the
model with different precipitation, radiation, compaction parameters, and combinations of the three.

Meteorological measurements are subject to stochastic and systematic errors. To capture potential stochastic
precipitation errors, we perturbed each particle's hourly precipitation with additive random noise, from a
normal distribution that had a mean of zero and was bound between ±25% of the OL precipitation value.
Raleigh et al. (2015) showed that many snowmodel outputs are more responsive to precipitation biases than
random errors. Therefore, we introduced systematic biases through different multiplicative snowfall correc-
tion factors (SCF). At every assimilation time step, each SCF was drawn randomly from a uniform distribu-
tion between −75% and 300%, following Raleigh et al. (2015). The particles did not retain “memory” of their
SCF from previous intervals. This two‐step approach to generate a precipitation ensemble is similar to
Magnusson et al. (2017).

Radiation is a control on snow temperature, which is a factor that drives destructive metamorphism. It also
drives snowmelt, and melt water retained in the snowpack can increase bulk density. Similar to precipita-
tion, we perturbed the hourly radiation input for each particle with additive stochastic noise from a normal

distribution—longwave noise bound between ±80W/m2 and shortwave noise between ±160W/m2. To cap-
ture systematic errors, we also applied an additive bias to each particle's full set of radiation inputs: longwave

bias bound between ±25 W/m2 and shortwave between ±100 W/m2, following Raleigh et al. (2015).

Observations fromKojima (1967) indicate that overburden compaction is a function of the weight of overlying
snow and the snowpack's viscosity coefficient. The coefficient can be calculated with a viscosity parameter,
which according to Anderson (1976) is determined from observed data. Sturm and Holmgren (1998) report
a range of parameter values for different classes of snow, including significant variations within individual
classes (e.g., range of 13 cm3/g for “maritime to alpine” snow). Given this uncertainty, we varied the parameter
around Kojima's default value of 21 cm3/g in a uniform range (±6 cm3/g) to represent uncertain model para-
meterization. The snow viscosity parameter has different notation in the literature; herewe follow the updated
Snobal code notation “C5” (formerly called “C2,” D. Marks, personal communication, December 2017).

We chose to focus on overburden compaction (C5) to investigate uncertainty in model density parameteri-
zation. Although we did not conduct a full sensitivity analysis with Snobal, offline tests with themodel's den-
sity equations showed that the C5 parameter explains 90% of variance in snow density simulations. With
Snobal, we foundminimal model sensitivity to changes in new snowfall density and destructive metamorph-
ism parameters (no figures shown). In the context of how Snobal computes density, focusing on overburden
compaction is justified because this process dominates throughout the entire snow year. In contrast, new
snowfall events are intermittent and destructive metamorphism acts only at low‐to‐moderate bulk density
that exists early in the snow year.
4.3.2. SWE Calculation, Notation, and Validation
We define the PF best estimate of snowpack density as the weighted average of all particles over time, with
weights generated by the PF (e.g., Magnusson et al., 2017). We calculated SWE by multiplying this density
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estimate by observed snow depth—therebyminimizing one source of uncertainty (snow depth) and focusing
our analysis on improving modeled density. Hereafter this quantity is called SWE_PF. To identify skill
improvement, we generated an OL estimate of SWE by multiplying the OL modeled density by the same
observed snow depth (SWE_OL). Because both SWE_PF and SWE_OL were based on observed snow depth,
any improvements in SWE_PF relative to SWE_OL are derived from improvements in modeled density.

To compare the PF and OL, we calculated RMSE, mean bias error, and the mean absolute error (Willmott,
1982). Although the assimilated snow depth observations were treated as periodic, we calculated these objec-
tive functions through all hourly time steps, because these data were readily available and we wanted to
characterize performance of the models between observations.

4.4. Experiments
4.4.1. Experiments Using Observed Forcings and Reanalysis Data
In the first set of experiments, we generated the OL model run using the default Snobal parameters and
observed forcings at CUES (section 5.1). Then, we compared the performance of the PF with ensembles gen-
erated as described in section 4.2. Next, we generated an OLmodel run using default Snobal parameters and
NLDAS forcing and again implemented the PF (section 5.2).
4.4.2. Synthetic Demonstration Scenarios
In reality, forcing data, parameterizations, and observations are imperfect. To better demonstrate the effect
of the PF on modeled snow density, we ran a series of synthetic experiments with specific, prescribed errors:

Scenario 1) Here we assumed the model was perfect, and meteorological data were the only sources
of uncertainty.

a. First, we ran themodel once for 2013 using observed precipitation and radiation and treated the
resulting snow depth, SWE, and density outputs as “truth.” Note that this is similar to the OL
runs in previous sections, but here we assume that the model outputs are perfect.

b. Next, we generated a new, synthetic OL run—this time with precipitation scaled by a multipli-
cative factor across a range of magnitudes (i.e., we introduced a known error).

c. Finally, we implemented the PF by assimilating snow depth from the truth run (a) every
month, with ensembles generated as in section 4.2, to determine whether the PF could adjust
for meteorological errors.

Scenario 2) Here we assumed that the forcing inputs were perfect, and the model parameterization was the
only source of uncertainty. As in step (a) above, we treated an initial model run as truth. Then
we generated a synthetic OL run—with the only difference being a range of different values for
the C5 parameter in the model's overburden compaction routine. We again implemented the
PF by assimilating snow depth from the truth model run and generated particles as in
scenario 4.2.

5. Results
5.1. Results With Model Forcings Observed at CUES

First, we describe PF results with the ensemble of particles constructed by varying meteorological forcings
only (section 5.1.1). We then compare these results to those from an ensemble constructed with compaction
variations alone (5.1.2) and a combination of the two (5.1.3).
5.1.1. Ensembles With Meteorological Perturbations
To start, we examined the performance of the PF when our ensemble was constructed by perturbing preci-
pitation alone (Figure 2). Year 2013 was a representative water year for our results, when OL depth and den-
sity were generally lower than observations throughout the year, andmodeled snowmelted out too slowly in
spring/summer. This is similar to 2014 and 2016 (supporting information). In 2015, OL depth was too low,
but density fluctuated below and above observations (supporting information).

Data assimilation improved estimation of snow depth overall, lowering RMSE from 0.36 to 0.27 m
(Figure 2a). The depth from the PF closely matched observations through the accumulation season (before
peak SWE) and the beginning of the ablation season (post peak SWE). However, modeled snow melted out
more slowly than observed during the latter half of the ablation season. With little precipitation during the
ablation season, there were few opportunities for the SCF to act upon simulated depth, and the PF ensemble
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was not wide enough to bring its estimate down (note that gray area does
not encompass observations at the end of the season). During this interval,
the PF performed worse than the OL in simulating snow depth. Through
most of the year, the PF improved depth by favoring particles with higher
precipitation. These particles also had higher modeled density, through
enhanced overburden compaction. The outcome was lower errors in mod-
eled density—reducing RMSE over 20% from 105 to 82 kg/m3 (Figure 2b).
The greatest improvements occurred during the middle of the water year
(January through April).

Although particles did not retain their SCF between assimilation inter-
vals, the highest weighted particles tended to have SCF values of approxi-
mately 1.5 (data not shown) throughout the season. As a test, we allowed
resampled particles to hold their SCF values across points of assimilation
(e.g., Magnusson et al., 2017) but found that the resulting ensemble
became too narrow and did not improve modeled density (no
figures shown).

OL density in 2013 was generally low compared to observations
(Figure 2b), and the PF improved density by increasing it. However, OL
density was not too low across all years. In Figure 3, we show the differ-
ence between PF and OL density across all years, when OL density was
below or above observations. The bars show that when OL density was
too low, the PF increased it, and vice versa. Although 2014 and 2016 were
similar to 2013, this bidirectionality was important in 2015, when OL
density was above and below observations at different parts of the year
(supporting information). Figure 3 shows that the PF improved modeled
density the most (y axis) and in the right direction when the OL errors
were greatest (bins on x axis).

Improvements inmodeled density led to better SWE estimates (Figure 2c).
SWE RMSE was lowered 28% from 203 to 147 mm in 2013. Similar to den-
sity, SWE estimates were improved the most during the middle of the
water year (January through April) and otherwise mostly unchanged from
the OL. Figure 4b and Table 1 compare RMSE between SWE_OL and
SWE_PF for different ensembles andwater years. Inmany cases, improve-
ments in SWE RMSE were greater than improvements in density RMSE
on a percentage basis (e.g., 2013). This occurred because the PF improved
estimates of density when snow depth was greatest—for example, during
February and March of 2013 (Figure 2c).

When constructing an ensemble of particles by perturbing radiation
inputs and precipitation, the PF estimates of snow depth and density were
very similar in 2013, with RMSE of 0.27 m and 81 kg/m3, respectively
(Figure S2). Overall, the effect of precipitation dominated radiation—the

ensembles constructed through variations in both forcings produced estimates that were close to those when
precipitation was varied alone (see Figure 4 and Table 1). However, overall SWE RMSE was slightly
improved (see Table 1) when perturbing both inputs. Therefore, when we perturb meteorological forcing
in all subsequent sections, we vary both precipitation and radiation.
5.1.2. Ensembles With Compaction Perturbations
Next, we constructed our ensemble by varying the C5 compaction parameter alone (i.e., no perturbations to
meteorological inputs). Although PF assimilation improved the snow depth simulation (RMSE reduced
from 0.36 to 0.24 m), it did so in this case by placing higher weights on particles with lower compaction,
which made density estimates worse in 2013 (Figure 5). As a result, estimated SWE had lower errors in
the OL (RMSE = 203 mm) than in the PF (RMSE = 304 mm; Figure 5c). The results were similar in other
years—Figure 4 shows that when C5 was varied alone, both density and SWE_PF RMSE increased in

Figure 2. Performance of the PF in WY 2013, where particles are created by
perturbing only precipitation forcing. (a) Snow depth, (b), density, and
(c) estimated SWE, calculated as modeled density from (b) multiplied by
observed (green) snow depth from (a). PF = particle filter; WY = water year;
OL = open loop; RMSE = root‐mean‐square error; SWE = snow water
equivalent.
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every year but 2015. On average, the compaction‐only ensemble increased SWE RMSE by 36% (Table 1).
Figure 3 shows that varying compaction alone often moved density in the wrong direction, for cases with
both positive and negative OL density errors.
5.1.3. Ensembles With Meteorological and Compaction Perturbations
In the next experiments, we constructed our ensemble by varying precipitation, radiation, and the C5 com-
paction parameter together (Figure S6). Again, the PF improved snow depth estimates, lowering RMSE from
0.36 to 0.27m. The PF increased depth by weighing particles with higher precipitation inputs (which acted to
increase snow density), along with particles with lower rates of compaction (which acted to decrease den-
sity). The effect of precipitation again dominated, producing results similar to the precipitation‐only ensem-
ble (Table 1).

In Figure 4b, ensembles where meteorological forcing and compaction
were perturbed together had lower errors than the OL in every year and
always performed better than the compaction‐only ensembles in depth,
density, and SWE (Table 1). The compaction and meteorological forcing
ensemble moved modeled density in the correct direction for each given
OL density error (Figure 3).

5.2. NLDAS Results

To quantify model performance with a widely used, gridded forcing data
set, we implemented the PF with NLDAS forcing (no downscaling) and
CUES depth observations. NLDAS precipitation was lower than that mea-
sured at MHP, and as a result OL depth and density tended to be biased
low relative to observations (supporting information; Table 1). As in
section 5.1, we conducted experiments with different PF ensembles and
computed summary statistics relative to the OL averaged across all water
years (bottom of Table 1).

Assimilation with an ensemble constructed by perturbing compaction
alone did not improve estimates of SWE: overall SWE RMSE increased
by 28% compared to the OL (Table 1). Perturbing the meteorological
forcing data alone produced the best results—that ensemble reduced
overall SWE RMSE by 51% compared to the OL and brought each objec-
tive function in‐line with the best results when using higher‐quality
CUES forcing data. The ensemble with meteorological forcing and com-
paction that varied together had similar improvements to perturbing
meteorological forcing alone—reducing SWE RMSE by 38%.

The meteorological data measured at CUES were better than the NLDAS
meteorological forcing. This is shown by the respective OL performances
relative to observations: RMSE for SWE_OL was 140 mm when using the
CUES data set, whereas RMSE was 179 mm with NLDAS forcing
(Table 1). However, Table 1 also shows that the PF was able to

Figure 3. Average difference between PF and OL modeled density for 100 kg/m3 wide “bins” of OL density error (OL—
observed density). Colors indicate different ensemble generation choices. PF = particle filter; OL = open loop.

Figure 4. (a) Density and (b) SWE_PF RMSE for different PF ensemble gen-
eration choices, compared to the OL. The two charts differ because
improvements in density have greater effects on SWE when snow depth is
higher. PF = particle filter; OL = open loop; RMSE = root‐mean‐square
error; SWE = snow water equivalent.

10.1029/2018WR023400Water Resources Research

SMYTH ET AL. 1304



overcome the relatively poor NLDAS forcing and improve estimates to the extent that error statistics were
similar to (and sometimes better than) PF estimates using CUES forcing. Therefore, relative to its OL,
there were greater improvements when using NLDAS data. Downscaling NLDAS would have likely
improved its OL performance but that was not attempted here.

5.3. Synthetic Demonstration Results
5.3.1. Scenario 1—Meteorological Forcing Uncertainty
The synthetic experiments were designed to demonstrate effects of different ensemble creation methods in
systematic, controlled tests. In scenario 1, we assumed a perfect model and all uncertainty was attributed to
meteorology. Figure 6 shows a synthetic truth generated with observed precipitation in 2013, and a synthetic
OL with precipitation inputs scaled down uniformly by 30%. As a result, OL depth and density were both
generally lower than the truth. With an ensemble generated by meteorological input perturbations
(Figures 6a and 6c), the PF reduced depth RMSE from 0.56 to 0.04 m by placing higher weights on particles
with higher precipitation inputs. These particles also had higher density, and therefore, the PF estimate of
snow density increased, reducing RMSE from 22 to 4 kg/m3.

Using the same synthetic truth and OL, we then generated our ensemble by perturbing the C5 parameter in a
uniform range around Snobal's default value of 21 cm3/g (Figures 6b and 6d). The PF again improved depth
estimates (reducing depth RMSE from 0.56 to 0.37m) but did so by favoring particles with lower compaction.
Therefore, these particles estimated even lower snow density, which increased density RMSE from 22 to
61 kg/m3. SWE RMSE was similarly degraded.

Figure 7a shows overall density RMSE for the OL simulation and three different ensemble creation methods
(meteorological perturbations, compaction perturbations, and both) in 2013, when the synthetic OL precipi-
tation inputs were scaled by different amounts. Ensembles with meteorological variations generally reduced
density RMSE. In contrast, the ensembles generated with variations in compaction parameters increased
density RMSE, with errors increasing with the magnitude of the precipitation error. This demonstrates that
the PF cannot compensate for meteorological forcing errors by generating ensembles only with
compaction parameters.
5.3.2. Scenario 2—Model Parameterization Uncertainty
In scenario 2, we assumed perfect meteorological data and uncertainty only in model parameterization. In
Figure 8, we generated a synthetic truth using the model's default parameter values (e.g., C5 equal to
21 cm3/g) and a synthetic OL run where C5 was biased low at 17 cm3/g. As a result, OL depth was lower than
truth, and density was higher—the synthetic OL compacted the snowpack toomuch.With an ensemble con-
structed by varying the compaction parameter (Figures 8b and 8d), the PF improved depth by placing higher

Table 1
Comparison of RMSE, MBE, and MAE for Different Ensembles

Ensemble description

SWE RMSE (mm) Full season MBE Full season MAE

Full
season

Accumulation
season

Ablation
season

Depth
(m)

Density (kg/
m3)

SWE
(mm)

Depth
(m)

Density (kg/
m3)

SWE
(mm)

CUES open loop 140 149 106 −0.36 −25 −71 0.40 81 122
Precipitation only 106 112 82 0.00 −31 −62 0.16 62 92
Radiation only 135 144 102 −0.28 −33 −80 0.31 75 118
Precipitation and radiation 105 110 82 0.00 −29 −59 0.15 61 91
Compaction only 190 203 137 −0.23 −44 −114 0.30 97 164
Meteorology and compaction 101 108 73 0.02 −23 −51 0.17 55 83

NLDAS open loop 179 180 157 −0.98 −44 −105 0.98 89 149
Precipitation and radiation 88 92 67 −0.02 −29 −53 0.18 52 75
Compaction only 229 235 183 −0.90 −63 −149 0.90 106 192
Meteorology and compaction 111 114 80 0.03 −41 −74 0.19 64 97

Note. Each metric is averaged across all water years (2013–2016), and SWE RMSE is further broken down to the accumulation and ablation seasons. Input data
are fromCUES (top) and NLDAS (bottom). The best ensemble for eachmetric/season is shown in bold emphasis. RMSE= root‐mean‐square error; MBE=mean
bias error; MAE=mean absolute error; CUES =University of California—Santa Barbara Energy Site; SWE= snowwater equivalent; NLDAS=North American
Land Data Assimilation System.
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weights on particles with lower compaction, reducing RMSE from 0.29 to
0.02 m. These particles also had lower density, which better matched the
truth—lowering RMSE from 52 to 5 kg/m3.

Using the same synthetic truth and OL, we then generated our ensemble
by perturbing meteorological inputs (Figures 8a and 8c). The PF improved
snow depth estimates by favoring particles with higher precipitation
inputs. These particles had higher density estimates, which increased
overall density RMSE from 52 to 79 kg/m3.

We compared density RMSE for the OL and the same ensemble creation
methods (Figure 7b), when the synthetic OL C5 value was changed by dif-
ferent amounts (synthetic experiment 2). In all cases, ensembles with
compaction variations alone reduced the density RMSE, while ensembles
generated with variations in meteorological forcing increased RMSE. The
PF could not compensate for compaction parameter errors by changing
meteorological inputs.

In both synthetic experiments, the greatest improvement relative to OL
was for simulations with the greatest prescribed errors, either positive or
negative. There was little to no improvement when prescribed precipita-
tion errors were less than 10% and when C5 values were close
to 21 cm3/g.

6. Discussion
6.1. Ensemble Generation With the PF

The results demonstrate that it is possible to improve simulation of snow-
pack density and therefore SWE by assimilating snow depth with the PF.
However, there is an inherent challenge when assimilating snow depth to
improve snowpack density simulation: the PF more strongly weighs
ensemble members with depth closest to observations but has no knowl-
edge of density or reasons for depth differences (Figures 1d and 1e).
Depending on how the ensemble is constructed, and the reason for differ-
ences in observed and modeled snow depth, it is possible for the filter to
degrade snow density estimation when assimilating depth. For example,
OL modeled depth and density were low relative to CUES observations
in 2013. The PF favored particles with higher snow depth estimates—
but when the ensemble of particles was generated by varying compaction
parameters alone, the PF weighed particles that compacted less, resulting
in an even lower (worse) density estimate (Figure 5). In contrast, when the
particles were generated with different precipitation inputs, the PF
favored those with higher precipitation which, through overburden com-
paction, also had higher (improved) density.

Based on the synthetic experiments, we conceptualize two cases when assimilating snow depth with the goal
of improving density (Figure 9a):

Case 1) When depth and density errors are typically in the same direction: both either too low or too high
relative to observations. In this case, creating an ensemble with different precipitation inputs will
improve both model states (Figure 9a, white boxes).

Case 2) When depth and density errors are typically in opposite directions. Here creating an ensemble of
model runs with different density compaction parameters will improve both model states
(Figure 9a, gray boxes).

The 2‐D histograms in Figures 9b and 9c show a depth ratio (OL modeled/observed depth for each hour, all
years), plotted against a density ratio (OL modeled/observed density) for CUES. The four quadrants corre-
spond to Figure 9a, and the colors indicate the number of data points in each histogram grid cell. In 2013,

Figure 5. Performance of the PF in WY 2013, where particles are created by
perturbing only compaction. (a) Snow depth, (b), density, and (c) estimated
SWE, calculated as modeled density from (b) multiplied by observed
(green) snowdepth from (a). PF= particle filter;WY=water year; OL= open
loop; RMSE = root‐mean‐square error; SWE = snow water equivalent.
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86% of all points indicated case 1. In this framework, it makes sense that an ensemble of model runs with
different precipitation inputs improved both model states for that year, while an ensemble constructed
solely of compaction parameters did not (Figure 4). In 2013, 2014, and 2016, most points fell in case 1
(60% in 2014, 78% in 2016).

Year 2015 was the only year when the compaction‐only ensemble did not increase RMSE for density and
SWE_PF relative to the OL (Figure 4). We can explain this result based on OL errors, as 62% of the points
in 2015 fall in the case 2 quadrants (Figure 9c). This is the only water year where most points indicate case
2. Even though varying compaction parameters improved density and SWE, the best results in 2015 occurred
when meteorological forcing and compaction were varied together (Figure 4).

6.2. Operational Feasibility

Our analysis with Figures 9b and 9c is possible because we have both depth and density data for validation.
Collocated depth and density are observations that do not exist throughout drainage basins. In practice, we
suggest the following.

Figure 6. Synthetic experiment, scenario 1, with precipitation scaled down by 30% in the OL in 2013. Shown are modeled
snow depth and density with the PF for two ensemble creation methods: (a, c) through perturbed meteorological forcing
and (b, d) different compaction parameters. OL = open loop; PF = particle filter; RMSE = root‐mean‐square error.

Figure 7. Synthetic experiments: comparison of density RMSE in 2013 for different ensemble creation methods (lines) for
(a) scenario 1 (errors in precipitation) and (b) scenario 2 (errors in C5 compaction parameter). In scenario 2, the OL
compaction parameter is varied around the “default” value of 21 cm3/g. OL = open loop; RMSE= root‐mean‐square error.
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1) It may be possible to determine the direction of model depth and density errors and therefore the optimal
PF ensemble. Where snow depth observations are available (regardless of the technique), it may be
necessary to obtain density measurements frommanual snow pits, SNOTEL sites, etc. The depth and density
validation data could be used to calibrate a model, but calibration may be difficult if meteorological forcing
data are highly uncertain.

2) Varying meteorological forcing and compaction together yields considerable improvement in density and
SWE estimates, similar to varying meteorology alone (Table 1). If results at CUES are typical, this suggests
that perturbing both meteorology and compaction together is the best approach, especially when the direc-
tion of density errors is unknown.

We demonstrate that the PF can overcome errors from coarse‐resolution meteorological data (such as
NLDAS) without downscaling, and surprisingly, yield error statistics similar to using local observations
(Table 1). While downscaling may improve OL performance and may be necessary for other applications

Figure 8. Synthetic experiment, scenario 2, with the synthetic OL C5 parameter value set to 17 cm3/g in 2013. Shown
are modeled snow depth and density with the PF for two ensemble creation methods: (a, c) through perturbed
meteorological forcing and (b, d) different compaction parameters. OL = open loop; PF = particle filter;
RMSE = root‐mean‐square error.

Figure 9. (a) Conceptual diagram of potential model depth and density errors. Points that are “too low” indicate modeled
depth or density 0–1 times observed values, and “too high” refers to modeled values 1–2 times observed. In case 1
(white boxes) errors are in the same direction. In case 2 (gray boxes) errors are in opposite directions. Also shown are 2‐D
histograms of open loop depth (x axis) and density (y axis) model errors (open loop modeled/observed values) for time
steps in (b) 2013 and (c) 2015 water years. Lighter copper colors indicate more points fall within a histogram bin. In 2013
most points indicate case 1, while in 2015 most points indicate case 2.
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(e.g., modeling hydrologic processes in the snow‐free season), the PF yields the greatest improvements when
OL precipitation errors are greatest (Figure 7a), so downscaling operations are likely unnecessary for
SWE estimation.

Snobal is an efficient point model which, in our experience, can simulate 1 year on one processor in approxi-
mately 3 s. With parallel processing onmodern computers, it should be possible to extend our PF framework
to a basin in real time, even with snow depth data at a 50‐m lidar spatial resolution that produces approxi-
mately one million pixels (Figure 1b), if the model simulations are updated each day throughout the snow
season. The use of iSnobal (a spatial version of Snobal, more efficient at simulating multiple points) or even
faster snow models (e.g., Factorial Snow Model, Essery, 2015) would further enhance practicality.

Snobal was used for illustrative purposes, and we expect similar results from other snow models that have
similar density process representations and similar model improvements with the PF when adjusting for
precipitation uncertainty (Figure 7a). We did not calibrate the model, focusing instead on OL versus PF per-
formance, and we acknowledge that errors for both are high relative to other papers (e.g., Magnusson et al.,
2017) that do use calibrated models. Still, the results are encouraging, indicating that SWE RMSE can be
reduced by at least 28% (when using high quality forcing) and as much as 51% (with coarse‐
resolution forcing).

More work is required to determine the spatial representativeness of our approach. Snow depth is highly
variable through space, affected by factors such as canopy interception of snowfall, wind redistribution,
aspect, and elevation. While lidar (for example) is a promising platform to resolve this variability, lidar snow
depth retrievals have their own sources of uncertainty, especially in areas with dense canopy and/or patchy
snowpack. In addition, simulating spatial variations in snow density with models is challenging, particularly
in light of spatial variations in forest characteristics. While an analysis at several SNOTEL sites at different
elevations and climates may provide useful information, such sites are typically located in flat, open clear-
ings. Future work should implement the PF with spatially distributed, remotely sensed snow depth data
—quantifying gains from the approach using spatially extensive snow density observations. The PF is well
suited for such spatial applications, as it can account for uncertainty in boundary conditions (e.g., precipita-
tion and radiation), which exhibit high variability across mountainous and forested watersheds.

6.3. Timing of Observations

In this paper, we assume that snow depth observations are collected once per month fromNovember toMay,
which could realistically represent the timing of remote sensing retrievals or manual snow surveys. As a test,
we ran our analysis with different observation timings (e.g., weekly, spring‐only, and single observation at
peak SWE) and did not find large differences in resulting model estimates. Preliminary results indicate that,
while more frequent observations (e.g., weekly) enhance PF estimates of snow depth, more infrequent obser-
vations (e.g., monthly) generate greater corrections to modeled density at each assimilation step. Future
work should investigate the effects of observation timing (relative to snow storms, for example).

7. Conclusions

Assimilation of infrequent snow depth observations with the PF improves model estimates of snow density
and therefore SWE. The improvement is bidirectional: the PF tends to lower estimated snow density when
OL density is too high and increases density when the OL density is too low. In both cases, the PF reduces
model RMSE most when OL errors are greatest. Overall, the PF improves estimated SWE more than esti-
mated density—because SWE is calculated by multiplying modeled density by observed snow depth, and
the PF tends to improve modeled density the most when observed depth is highest.

We generated ensembles by perturbing precipitation, radiation, a model compaction parameter, and combi-
nations of the three. At CUES, the effect of precipitation perturbations dominated the effect of varying radia-
tion—but perturbing both meteorological inputs produced the best estimates of snow depth, density, and
SWE. In contrast, introducing compaction variations alone degraded model estimates of density and SWE
in three of four years. Varying meteorology together with compaction yielded improvements similar to per-
turbing meteorology alone.

These results could be explained by the direction of OL depth and density errors in each water year. In 2013,
2014, and 2016, the errors were mostly in the same direction (estimated depth and density both low relative
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to observations). In those years, when the PF improved estimated snow depth by weighing particles with
higher precipitation inputs, modeled density also increased. In 2015, OL depth and density errors were in
opposite directions. This was the only year the compaction‐only ensemble improved density and SWE rela-
tive to the OL—by favoring particles with lower compaction rates.

Assimilation of snow depth led to greater improvements when the model was forced with coarse‐resolution
NLDAS data. Similar to Magnusson et al. (2017), this demonstrates the potential to use lidar (or other remo-
tely sensed snow) data with the PF forced by nonlocal meteorological inputs and produces comparable
results to assimilation with a model driven by high‐quality field station measurements.

The PF is a promising approach for improving density and SWE estimation with remotely sensed snow
depth, which may become available from ASO, National Aeronautics and Space Administration SnowEx,
or other future missions. The optimal construction of the PF ensemble depends on the cause and sign of
model depth and density errors. Future research should examine the representativeness of the results at
CUES (e.g., in different climates), potentially including other snow density models.
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